SPREADING OF AN ELLIPTICAL FILM OF LIQUID
UNDER IMPACT

E. I. Andriankin and V. K. Bobolev

The article deals with the impact on an elliptical film of liquid, with the effect of the film
shape on the punch deceleration and on the velocity of liquid spreading, and with the stability
of the process. The problem is solved for the case of a slowly flowing viscous liquid as
well as for an ideal liquid, buf with the inertia forces taken into account. The theory is
found to agree with experimental data. The inertia-free spreading of a circular film of vis-
cous liquid has already been studied by Reynolds [1]. Interest in this problem is being
shown again in connection with certain aspects of lubrication, of the punch and die operation,
and with the sensitivity analysis of liquid explosives [2, 3, 4, 5, 6, 7]. Several articles deal
with the impact on a circular film [3, 4, 5, 6].

1. Formulation of the Problem. We will consider an axially oriented impact at velocity
wg on a liquid film having the shape of an elliptical cylinder (height hy, semiaxes ay= by) or of a 2by-wide
strip into which an ellipse degenerates when ay> by. The compressibility of the liquid as well as of the
punch and the die will be disregarded, The ratio hy/b, will be assumed small, With the characteristic
scale factors @, by, h, for the dimensions along the x, y, z axes respectively, hy/| w,| for time, pwib?/h}
for the pressure, | wy| for the axial component of velocity, and [w,|by/h, for the velocities in the x and the
y direction, the system of hydrodynamic equations will, after simplification based on the smaliness of
(hy/bp)?, be written as follows:

Du 1 dp % Dy 1 adp v Bp
= s +v 22, %2 0
a2’ 0z

ou {  Bw _, D 08 9 2 o . _p (1.1)
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The boundary conditions here follow from the requirement that the axial velocity of the liquid at the
punch and at the die be the same,

t
Whemo =0, Wlean = w0 (&), b= hy +S w’dt, w° (0) = w,® (1.2)

0

(wy° is the initial squeezing velocity) and from the symmetry at the center
© (0,0, =0, v(0,0, =0
« For a viscous liquid, adhesion u=0 and v=0 should also occur at z=0 and z=h(t).
Pressure on the lateral surface of the film will be disregarded.

A golution will be sought in the form {8}

w=aU G, t), v=yV (1), p=P(t) [1—2—:—1,—?:] (1.3)
Equations (1.1) will then be satisfied, if
U ou U av av i
@ [+ U +w T —v 0z2:’=b2[W+VZ+wE-—v5%] (1.4)
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2. Spreading of a Film of Ideal Liquid. We will first consider the case where the in-
ertia forces prevail over the viscous forces, and the liquid may be treated as an ideal one by letting »=0.

It will be assumed that U and V do not depend on z. We then find from (1.4)

w=zW (), W=u"@)/h( (2.1)
From (1.4) we obtain the equations for U and V,
A4 UY=B(VE+V), U+V+W=0 (2.2)

_ pa? . 22 £
= o2 )

as well as for the punch velocity

moi® (t) = 222 (U 4 1) (2.3)

The dot signifies a derivative with respect to time.

The initial conditions for these equations can be determined by assuming that during the impact
(0=t=t1y) the accelerations are infinite while the velocities tend toward their finite initial values [5]. In~
tegrating the pressure over the area of contact with the liquid and over the time from 0 to t;, and then ap-
proaching the limit ty— 0, we find the impulse supplied by the punch equal to the momentum lost by it

tﬂ
A= 1tim S pdsdt = ertbop Uy, Al = mg(wy® — wp)

o0 4

0 s

as a quantity independent of the coordinate system so that by interchanging the x and y axes we can write

AT =00 el a2Uy = b2V, (2.4)

From (2.2), (2.3), and (2.4) we find

bo?We a*Wo o wo®
UO——MW 0= ag? -+ bo? ? WO— o (2-5)
o mowp . npao?h 8
Yo = et my’ Mot = Tho (ot & b7

where m, is the associated mass, and subscript 0 denotes the initial value of a variable.
The initial conditions (2.5) follow also from the hydrodynamic theory of impact [9, 10, 11].

We will verify this on the simple case where qy— « and the ellipse degenerates into a 2by~wide strip.
The particular solution for the velocities, for the potential &;, and for the specific impulse i, then becomes
- F 1
B
o (22 — h?2) — (y — b2
Oy = w,” E=HEH | (2.6)

In a more rigorous formulation of the problem, the potential of the initial velocity field is deter-
mined by solving the Laplace equation V& =0 for the conditions
D(kby, 2)=0, 0D/0z),0y=0, 9D/0z],op, = wy°

Let us represent ¢ as the sum & =&;+ &, so that

o gt — z2
AD, =0, @ (4by, )=, ", 001/0z]ig =0
Application of the Fourier method yields here
e o by o b 2(— 1)t w® By ch (sthy / ho) P
D = wy" g - Wy = — Wy +2 WERECh) | (thok 7 ko) S 2.7)
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It follows from (2.7) that

hg b,
_ 1 oD .
B\ et L iy=—200§ Oy, Yy =
0 0
Qo0webo® [, A [ ho\2 MWl . 6 o 1 .. kb
=— By () —s ()] o= ?c?k% - th 5 (2.8)

Since tanh(rkby/hg) =1 and k™3 =k™2, then
b N . 4
ol o7 D k= e
k=1

A comparison between (2.6) and (2.8) will show that the particular solution describes the mean-over-
the-thickness velocity field in the film, while the initial squeezing velocites wy° =w;+AI/m; and the asso-
ciated mass m, =—Al/wj differ from those in the exact solution by an amount of the order of (hy/by?. Itis
to be noted, however, that the lateral velocity u=98® /8y at the punch wall is initially infinite. The forma-
tion of a high-velocity shroud when t,— 0 is characteristic of many situations and is observed, for example,
when a plate strikes the water surface. This phenomenon is qualitatively explained by lateral load relieving
waves [5].

The transient time ty corresponding to the particular solution can be estimated from the condition of
potential rise to a maximum difference (& —®¢)yax=Woho/2 at the lateral surface of the liquid film, which
indicates that the initial conditions (2.6) are not stringent. With the aid of the Lagrange—Cauchy integral
we find

v% 4 w?
2

(© — DgYmax = dt ~ t (u‘o°bo )2 by by ho (.E".)z

T\ e

S

Introducing now the following dimensionless functions

W W . h t] e |
b= V=T E=5 T="%

into (2.2) and (2.3), we arrive at a successively integrable system of equations

2(1 488 D= — (1 — )2 — )+ BE BN+ 20+ ) p— de], p() = (2.9)
20th !%=¢=_2¢+z(1_gg), By =1 (2.10)

E
(&, e=pm 0=1—e p=T iR (2.11)

1

If the punch face conforms exactly to a plane film section, then g =agy, b=hy, 8=my/m, and the equa-
tions make up a closed system.

An Abel equation like (2.9) has three singular points in the =0 and 0=¢ =1 region: saddle point
£=0, =0; saddle point £=0, $=2; and node £=0, =1, with the slope of the particular solution dy/d¢ =
3B (1 — ¢). Near the node point the integral curves are tangent to the y axis with an infinite derivative

Y =1+ Ktk +3(1 —¢)t, K = const (2.12)
It follows from (2.10) and (2.12) that near the node which corresponds to complete squeezing of the
liquid
h-—>0, 0 = BE:, B = const

and, consequently, we conclude from (2.11) that the time of punch motion is T ~E™2—>o00_. With thex and y
axes interchanged according to the conditions of the problem, function U becomes function V and parameter
& becomes2—e. Withtheaid of (2.2), this property can be expressed in dimensionless form,

CP(E’ B1 8)“:“‘(])(&7 ‘372_8)7 (P—'_—‘1.—'lp



/7” 5’0
7
0.5 0.5
\ 2
\ \\ 3
0.25 A\ ] \z AW . P =T ]
\\\ \\\\\\
\ \\\
V] 0.25 0.5 27t 25 025 0. 0.75 3

%
2
/ J
AW
~|
~
X
0.5
\\
[~
~
7 4.25 0.5 0.75 ¥
Fig. 3

a,b

x/ ad
ol o4

\ S
7 %
///
0.05 0.25

7 0.5 A E/ 0.75 05 775 £
Fig. 5 Fig. 6

In the special case where the ellipse degenerates into a circle
e=1, ¢ (& B, 1) = —0E, B, 1)ie, p=1
Then {2.10) and (2.11) yield

RN T
= EYa . _
0=t (1 Y T a+pr

RS Ll k=178, k= +1/B"

-

LX (k) — A (Ko}

X (k) =

(2.13)
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The radial velocity and the pressure are simply

38p (1 +B)® odr g2 :
U,.:—-ZTTG(E) p—-———m’TE’g)}-—!—i—(ro)] (2-14:)
B— 8hog M
orgd 07 Tnrg?

It is evident from (2.13) and (2.14) that the spreading velocity vp(ry, t) and the pressure at the center
pl0, t) reach their maximum values not at once but after some interval of time (see, e.g., curve 3 in Fig. 1,
where the change in pressure at the center of a circle py=Ph?/pr?w,? is shown for f=10). A maximum
exists here as a result of two opposing effects: increase in the film thickness and deceleration of the
punch.

In the other extreme case £~ 0, where the ellipse degenerates into a 2bj~wide strip, Egs. (2.9),
(2.10), and (2.11) are also easily integrable,

0 g B B L _y_
P T gy e~ g P — B 20

v=—- yB b=7 iﬁa (wnhfoe) [1 - (b—yo)z] (2.15)
B= 4h0q uo‘= m, = lim &% (ag — o)

It is evident from (2.15) that for a finite 8 the squeezing time becomes

t~ (1 +B)2E > 00

From (2.2}, (2.9), and (2.10) we derive an expression for the pressure at the center of the ellipse,

P (@) = gty (P 12— ) (6= 9) + 9 +2(1 + &) p— de]
u=—g—;;nye(2—1p) (2.16)

A decrease in ¢, i.e., a greater eccentricity, reduces the severity of the impact, and with r02=a0b0
the maximum pressure on an ellipse ¥ <1 or on a strip is smaller than on a circle = 1. This is naturally
so since the perimeter of an ellipse is longer than that of a circle and, therefore, squeezing occurs under
less restraint. The pressure on a strip is greater than on a circle, if ry=b,, because now the perimeter
per area of a circle is greater than that of a strip. For comparison, Fig. 1 depicts curves of pressure
Po=Phy/pgw,’by? at the center of a strip (curve 1) and at the center of a circle (curve 2) during squeezing
at constant velocity.

In experiments f is usually large and, therefore, it is reasonable to assume a constant squeezing ve-
locity. A solution based on this assumption is exact, moreover, inasmuch as the combination of terms
dw/9t+wdw/dz=0 in (1.1) when w,= const, and thus the axial projection of the Euler equation is satisfied
exactly rather than approximately even when h/b is small.

Let the magnitude of ¢ be arbitrary but the mass of the punch be large. Solution (2.9) can then be
found by expanding into a series in the small parameter B~1, and already the zeroth-order term in Yy sat-
isfying the equation

gL d‘l’o =0P2+2(1 Fe)Po—4e, Y1) =¢ (2.17)

will at B— « give a satisfactory approximation in the 108~'=<¢ =1 range. Integrating (2.17) will yield
Ml +EY=F—2—HE +ak—2+8), ak—2+8)=k+2—8
p=2 () [(1—%) +3)i-F—&] e=1/5 v—t—g
The position of an £ 1 node does not coincide with (2.12) lin the zeroth-approximation, i.e., when

£~0, Y=y, and P, =1-(2-k)/6=1, and a small difference in §; from the exact solution appears when ¢
is small. When e= 1, however, the approximate solution becomes exact because ;= 1 now.

The graphs of functions ${¢) and 7{(£) are shown in Fig. 2 and in Fig. 3 for £=0.5, $=10, 100, and
1000 (corresponding curves 1, 2, and 3) and, for comparison, the zeroth approximation has been indicated
by a dashed line. Itis evident here that a difference between the approximate and the exact solution be-
comes noticeable only at £ = 108-1,
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It would be interesting to compare the spreading velocities v}, and w, along the minor and the major
semiaxis of an ellipse,

(qu 2_3¥V U _2-% (2.18)
u z U

Tnitially ¢ = £ <1 and, according to (2.18), Vp>u,. This fact is explained by the large pressure gra-
dient along the minor semiaxis, which results in a rotation of the velocity vector v/u= y/x. During squeez~
ing-at a constant velocity, 7— 1 and $ —~ 1—(2~k)/ 8, and thus always v,>u,.

If the mass of the punch is finite, then 3 —~ 1 when £ — 0 and, therefore, vj;<u,. This fact has to do
with the inertia of the spreading liquid when the pressure forces are negligible.

We will now consider the exact solution for the case where the film is squeezed by a constant ex~
ternal forcef0=7m03bao (U%+1U) /4. Integrating this expression and using (2.2) will yield

A4+ U—éﬂepoAt, B+V _ BiVo xpopt

A—U 7 A=T, B—V ~B—V,

A = 4fy [ mpag®hy, B=uayd/b

We note that Egs. (2.2) are simply integrated also when ¢— 0 and fy/a=const. The spreading of a
liquid between two flat surfaces is described by the same equations (2.2) and (2.3), if one considers that
e=g(t) and B=8(t), since

da/dt = aU, abh = agboh,, a(0) = a, (2.19)

An elliptical film remains elliptical when hammered out. Indeed, any arbitrary point on an ellipse
with semiaxes @4, b; whose coordinates at time t; are x, y will after the time t;+ dt have moved to the point
whose coordinates are

2 =z + Ugydty, y=wm+ Vy, &t
and which belongs to the ellipse with semiaxes
ay = a; + Umdt, by == b, + Vbydt

This can be verified by breaking up the equation x%/a,2+ y%/b% =1 with an accuracy of dt and by
considering that
24 /a? + y /b4 =1

Of practical interest is the impact of a large mass, when wy°= const and (2.2), (2.3), and (2.19) will
yield

T =do—B(@*+3), b —qU—0), %% —i(p—1)
oy=28, a(l)=1, a=alay, 8(1)=25§ (2.20)

From the first two equations in (2.20) we get the Abel equation:
20 (1 — 8922 = 4g — 8 (¢ +3)

This equation has the following singular points: focus (0,0), saddle points (1,1) and (—1,1),and nodes
(1,3) and (=1, —3). The vertical lines § = + 1 represent particular solutions with the integral curves ap-
proached as the derivative becomes infinite. The zero isoclinic 6=4¢/(¢*+3), shown by a dashed line in
Fig. 4 originates at the singular point (1,1) has a slope dp/d6=2, and lies below the separatrix ¢=1+%/,
(6—1). The initial conditions (point 1) lie on the hisector ¢=46 indicated by a dashed-dotted line.

It becomes evident from Fig. 4 representing the field of integral curves that under continuous squeez-~
ing an ellipsetransforms intoacircle with some radius ry (point 2). At that time, however, the velocity
field still remains asymmetrical, because

a=b=r, UlV=(1—q) [ +¢)<1,

when ¢= ¢y<1, i.e., vp>4,, and thus the circle transforms further into another ellipse — with semiaxes
b>g this time (segment between points 2 and 3 on the integral curve in Fig. 4). This process is repeated
with the eccentricity decreasing every time and with the focal distance |¢2—b?[1/2 oscillating.
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If Egs. (2.20), in the vicinity of a focus, are written in polar coordinates

2ﬁliﬂ—_2—]—cos%)——Zsin2m+0.25r2sin22w, M= ~—1ngf, ¢=rsinoe,

oan
§=rcosw, O0<r<ci

then it becomes evident that, as h—0 (3— ), w— « because dw/dn>0; i.e., the number of oscillations is
infinite. It is to be noted that the separatrix originating at point (1,1) (heavy line in Fig. 4) may not be
treated as the solution to the problem, since the initial condition 63=1 corresponds to the degeneration of
an ellipse into a strip ¢=1. However, one may approach the separatrix arbitrarily close and the oscilla-
tions will start only when the squeezing is almost complete, i.e., when h—~0. With ¢ and b expressed, ac~
cording to (2.20), as

3 E

. B 1 ' 1

a = ay% /”exp7S %dg, b:bog—/zexp—7$ —%—d&,
1 1

we will find that the amplitudes K= (g —b) /g, of the ellipse axes oscillation are extremal K, at points £,
representing the roots of the equation

Eo

.b 2 o
1 —pEexp| Ldt=1+o@) K=2(0) L9
i

It follows from (2.20) that 6— 0 when £ — 0, in accordance with the equation

0, d6

d?0 dd 3

6——>§(Asin1;l/—%—}—3cos %), ¢'9§(A sin 22 V— +3100S11n/2)
K— glz(Az Sinl‘n/—‘i -+ B, cos '17—-2‘)

For this reason, the amplitudes of oscillation decrease, and an ellipse becomes a circle. The curve
in Fig. 5 represents the relative film thicknesses &, at which an ellipse becomes a circle for the first
time (point 2 in Fig. 4), calculated as a function of 8,. It is noticeable that the shape of an ellipse starts to
oscillate later when ¢ is small. And only when the ellipse is almost a circle at the very beginning will
oscillations occur already at light squeezing. Thus, for example, calculations have shown that £, is equal
to 0.16 or 0.29 respecnvely when 6,= 10-3 or 10~%. The curves in Fig. 6a show the variation in the semi-
axes of an ellipse, ¢ and b= b/ag, calculated for 8y=0.43. The curves in Fig. 6b represent K= =¢—b calcu-
lated for 8,=0.43 and 0.55. For comparison with theory (E. 1. Andriankin) we also show the test curves in
Fig. 6a, b which have been obtained by V. K. Bobolev and A. V. Dubovik: (1) for aqueous glycerine, p=1.24
g/cm3, ¢ =3 poise, wy=2 m/sec, my=5 kg, punch radius 9.5 mm, h;=0.25 mm, g¢¢=4.45 mm, by=2.85 mm,
Re=1, §;=0.42, and 5=1.76 - 10%; (2) for hy=0.5 mm, g¢=0.45 mm, by=2.85 mm, Re=2, 6,=0.43, and 5=
3.5+ 10% (3) for honey, p=1.41 g/cm?®, u=100 poise, w,=1 m/sec, my=10 kg, hy=0.5 mm, g,=4.75 mm,
by=2.55 mm, Re~ 0.35, 6,=0.55, and f=17.4 - 10*.

The problem of spreading is simple to solve in the case of a circular film ¢ =b=R(t), even when the
punch deceleration is taken into account, because then

U=V, B=FE v=1, Bo = Bhomy [ spryt
Integrating (2.10) and (2.11) yields with (2.19)

i A __w _ E(l+6)
R—Tog s U———%e, ez_—f+—ﬁoF,"_

T=2(""— 1)+ 048, (1 — &™)

If the punch is stopped at time t; as a result of some external action whatsoever, then the liquid will
continue to spread due to inertia and
p=0, U+4+U2=0, UR,=dR,/dt, R’ =R,
U=UR /Ry, Ry=RU+U{t—1)]
3. Slow Spreading of a Viscous Film. Disregarding the inertial terms in (1.4) will
leave the following equations:
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U v dw dw®  mab
@oa =V, UtV =0, mgp =P
. pat U
PO =—%5%a

Integrating them with the conditions of adhesion taken into account, we have

U=z2(6—20°@), V=:0—2V"@) w=—"0=2p
P = parU°, V° =a?U°/ 02, U° = —3eh 3w ()

Integrating the equation of motion for the punch yields

w® (t) — woo + 33"‘!”"l(]3b08 (i - Eﬂ)

: 2mgh o E3 (agh -4 b?) (3. 1)
. Ek E—E)E+E) ]
——gt—5— T EFgya—g,
_ 2mahotwy® (80 + be?)
E"Z =1+ 3n.pa03b03

It follows from (3.1) that the punch comes to a stop within a finite film thickness £g, but the time of
motion until full stop — proportional to In(¢ ~ £))—is infinite. If we compare the finite film thicknesses £;°
and & under impact with a circular and an elliptical punch, respectively, both having the same mass and

2

base area ry°=gyby as well as the same velocity, then we arrive at the entirely obvious result that gk > &
, that a narrow film is more easily squeezed.

In solving the problem of an elliptical film hammered out between two flat plates, we will assume
that the ellipse boundary expands at the mean-over-the-thickness velocity. Then

h
Ula( . Uah? . V°bh?
h“& 2h—2)di = —5—, b= (3.2)

a =

0
These relations satisfy the condition of constant liquid mass gbh =ggbgh,
Considering that V°=¢?U%™?, we have from (3.2)

2 1 4 bo \2
0% — B = 0,2, ¢ = a2 — by’ azzcé—ﬁ—}\./’, 7»:92—+(9%—0-)

6 Ve 2 2 1 — 8o
K={1+)60') [(1 _\vLml)/ _‘_(ml_i)/}} 0)1 —1+ 6zg:

(3.3)

., the focal distance is maintained (unlike in the inertial case), but the difference (¢ ~b)/a decreases
monotonically. The function K(£) has been plotted in Fig. 6b for 5;=0.43 and 0.55. However, the finite
mass of the punch will come to a stop when &> 0 and, therefore, the ellipse does not transform into a cir-
cle. Indeed, integrating the equation of motion for the punch and taking into consideration (3.3),we obtain

3npaghe [ .- 22 W=y et (M — M
W) =w’ + gt [g i PO T T Saghy

Ehy = ag? + by

Since the first term inside the brackets increases fast when £ — 0, hence w°(£) vanishes when £x—0
It is also not surprising that the eurves ¢ and b representing the inertial and the viscous case, respec-

tively, are close (points 4 in Fig. 6a), since the spreading is governed by the mass balance, even though
the pressures are quite different.

In conclusion, we write the equation of motion for a circular film of liquid squeezed under a constant
force fo=mr Py /2 and include here both the inertial and the viscous term.

The solution will be sought in the form

dw

U=V, U=— 5 w=w()

o] =~

From (1.4) we then obtain an equation for w which is analogous to the boundary-layer equation

Pw dw | (dw\ 2 16f
%75—2%m+45)—“» o =

Trytp
and which can be solved in the form of a series.
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